[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 3 (Fall 2025) ::
MEDICAL SCIENCES 2025, 35(3): 294-305 Back to browse issues page
Growth and differentiation of mesenchymal cell-derived cardiomyocytes on biologically active nanofibers: an experimental study
Zakiye Mokhames1 , Mahmood Dehghani Ashkezari2 , Ehsan Seyedjafari3 , Seyed Morteza Seifati1
1- Biology Department, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
2- Biology Department, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran , mdashkezary@yahoo.com
3- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
Abstract:   (259 Views)
Background: Dysfunction of the heart cells is one of the main causes of heart failure or lack of properly heart function. In the present study, human placenta extract (PE) along with poly lactic co-glycolic acid (PLGA) and poly hydroxyl butyrate (PHB) were used to make bioactive scaffolds using electrospinning method.
Materials and methods: Electrospinning method was used to make PLGA-PHB and PLGA-PHB-PE nanofibers. Morphological evaluation of PLGA-PHB and PLGA-PHB-PE nanofibers was done using electron microscope. Degradability rate, water absorption capacity, protein and adhesion strength of the scaffolds were investigated. Mesenchymal cells were extracted from adipose tissue. In order to confirm stem cells, CD34, CD45, CD90 and CD105 markers were performed by flow cytometry. Also, the expression of MyoD and Troponin T genes was performed by RT-PCR.
Results: The degradability of PLGA-PHB-PE scaffold was higher compared to PLGA-PHB in different days. Also, water absorption, protein and adhesive strength were higher in PLGA-PHB-PE scaffold compared to PLGA-PHB (p<0.05). Gene expression of MyoD and Troponin T genes was higher in cells grown on PLGA-PHB-PE scaffold compared to PLGA-PHB (p<0.05).
Conclusion: According to the results, it can be concluded that the PLGA-PHB-PE scaffold has a high potential to promote the cardiac differentiation of MSCs and can be used in cardiac tissue engineering for heart muscle repair.
 
Keywords: Nanofibers, Stem cells, Tissue engineering, Mesenchymal cells, Poly lactic-co-glycolic acid, Poly hydroxyl butyrate
Full-Text [PDF 1746 kb]   (82 Downloads)    
Semi-pilot: Experimental | Subject: Cardiology
Received: 2024/07/28 | Accepted: 2024/11/16 | Published: 2025/09/1
References
1. Gańczak M, Miazgowski T, Kożybska M, Kotwas A, Korzeń M, Rudnicki B, et al. Changes in disease burden in Poland between 1990-2017 in comparison with other Central European countries: A systematic analysis for the Global Burden of Disease Study 2017. PloS One 2020;15:e0226766. [DOI:10.1371/journal.pone.0226766]
2. Khan MA, Hashim MJ, Mustafa H, Baniyas MY, Al Suwaidi SKBM, AlKatheeri R, et al. Global epidemiology of ischemic heart disease: results from the global burden of disease study. Cureus 2020;12. [DOI:10.7759/cureus.9349]
3. Robinson S, ed. Priorities for health promotion and public health. London: Routledge; 2021. [DOI:10.4324/9780367823689]
4. Kilic A, Mathier MA, Hickey GW, Sultan I, Morell VO, Mulukutla SR, et al. Evolving trends in adult heart transplant with the 2018 heart allocation policy change. JAMA Cardiol 2021;6:159-67. [DOI:10.1001/jamacardio.2020.4909]
5. Khush KK, Hsich E, Potena L, Cherikh WS, Chambers DC, Harhay MO, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-eighth adult heart transplantation report-2021; focus on recipient characteristics. J Heart Lung Transplant 2021;40:1035-49. [DOI:10.1016/j.healun.2021.07.015]
6. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, et al. Electrospinning for tissue engineering applications. Prog Mater Sci 2021;117:100721. [DOI:10.1016/j.pmatsci.2020.100721]
7. Tajvar S, Hadjizadeh A, Samandari SS. Scaffold degradation in bone tissue engineering: an overview. Int Biodeterior Biodegrad 2023;180:105599. [DOI:10.1016/j.ibiod.2023.105599]
8. Dou D, Zhang Y, Zhou J, Li L, Wang L. Degradation behavior of polylactic‐co‐glycolic acid and polycaprolactone with nanosilver scaffolds. J Appl Polymer Sci 2023;140:e54664. [DOI:10.1002/app.54664]
9. Ghosh Dastidar A, Clarke SA, Larrañeta E, Buchanan F, Manda K. In vitro degradation of 3D-printed poly (L-lactide-Co-glycolic acid) scaffolds for tissue engineering applications. Polymers 2023;15:3714. [DOI:10.3390/polym15183714]
10. Li J, Chen JN, Peng ZX, Chen NB, Liu CB, Zhang P, et al. Multifunctional electrospinning polyhydroxyalkanoate fibrous scaffolds with antibacterial and angiogenesis effects for accelerating wound healing. ACS Appl Mater Interfaces 2022;15:364-77. [DOI:10.1021/acsami.2c16905]
11. Pan SY, Chan M, Wong M, Klokol D, Chernykh V. Placental therapy: An insight to their biological and therapeutic properties. Blood 2017;4:12.
12. Silini AR, Cargnoni A, Magatti M, Pianta S, Parolini O. The long path of human placenta, and its derivatives, in regenerative medicine. Front Bioeng Biotechnol 2015;3:162. [DOI:10.3389/fbioe.2015.00162]
13. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019;8:886. [DOI:10.3390/cells8080886]
14. Fitzsimmons RE, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int 2018;2018:8031718. [DOI:10.1155/2018/8031718]
15. Vasanthan J, Gurusamy N, Rajasingh S, Sigamani V, Kirankumar S, Thomas EL, et al. Role of human mesenchymal stem cells in regenerative therapy. Cells 2020;10:54. [DOI:10.3390/cells10010054]
16. Ardeshirylajimi A, Soleimani M, Hosseinkhani S, Parivar K, Yaghmaei P. A comparative study of osteogenic differentiation human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell J (Yakhteh) 2014;16:235.
17. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis 2020;11:349. [DOI:10.1038/s41419-020-2542-9]
18. Li Z, Hu S, Cheng K. Chemical engineering of cell therapy for heart diseases. Acc Chem Res 2019;52:1687-96. [DOI:10.1021/acs.accounts.9b00137]
19. Li Z, Li X, Xu T, Zhang L. Acellular small-diameter tissue-engineered vascular grafts. Appl Sci 2019;9:2864. [DOI:10.3390/app9142864]
20. Shao X, Taha IN, Clauser KR, Gao Y, Naba A. MatrisomeDB: the ECM-protein knowledge database. Nucleic Acids Res 2020;48:D1136-44. [DOI:10.1093/nar/gkz849]
21. Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, et al. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016;7:1-12. [DOI:10.1186/s13287-016-0440-y]
22. Xing Y, Shi S, Zhang Y, Liu F, Zhu L, Shi B, et al. Construction of engineered myocardial tissues in vitro with cardiomyocyte‑like cells and a polylactic‑co‑glycolic acid polymer. Mol Med Rep 2019;20:2403-9. [DOI:10.3892/mmr.2019.10434]
23. Muniyandi P, Palaninathan V, Veeranarayanan S, Ukai T, Maekawa T, Hanajiri T, Mohamed MS. ECM mimetic electrospun porous poly(L-lactic acid) scaffolds as potential substrates for cardiac tissue engineering. Polymers (Basel) 2020;12:451. [DOI:10.3390/polym12020451]
24. Torabi M, Abazari MF, Zare Karizi S, Kohandani M, Hajati-Birgani N, Norouzi S, et al. Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polym Adv Technol 2020;31:3123-32. [DOI:10.1002/pat.5164]
25. Saludas L, Garbayo E, Mazo M, Pelacho B, Abizanda G, Iglesias-Garcia O, et al. Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair. J Pharmacol Exp Ther 2019;370:761. [DOI:10.1124/jpet.118.256065]
26. Muniyandi P, Palaninathan V, Mizuki T, Maekawa T, Hanajiri T, Mohamed MS. Poly(lactic-co-glycolic acid)/Polyethylenimine Nanocarriers for Direct Genetic Reprogramming of MicroRNA Targeting Cardiac Fibroblasts. ACS Appl Nano Mater 2020;3:2491-505. [DOI:10.1021/acsanm.9b02586]
27. Żywicka B, Krucińska I, Garcarek J, Szymonowicz M, Komisarczyk A, Rybak Z. Biological properties of low-toxic PLGA and PLGA/PHB fibrous nanocomposite scaffolds for osseous tissue regeneration. Evaluation of potential bioactivity. Molecules 2017;22:1852. [DOI:10.3390/molecules22111852]
28. Zhang G, Zhen A, Chen J, Du B, Luo F, Li J, Tan H. In vitro effects of waterborne polyurethane 3D scaffolds containing poly(lactic-co-glycolic acid)s of different lactic acid/glycolic acid ratios on the inflammatory response. Polymers (Basel) 2023;15:1786. [DOI:10.3390/polym15071786]
29. Ghosh Dastidar A, Clarke SA, Larrañeta E, Buchanan F, Manda K. In vitro degradation of 3D-printed poly(L-lactide-co-glycolic acid) scaffolds for tissue engineering applications. Polymers (Basel) 2023;15:3714. [DOI:10.3390/polym15183714]
30. Krucińska I, Żywicka B, Komisarczyk A, Szymonowicz M, Kowalska S, Zaczyńska E, et al. Biological properties of low-toxicity PLGA and PLGA/PHB fibrous nanocomposite implants for osseous tissue regeneration. Part I: Evaluation of potential biotoxicity. Molecules 2017;22:2092. [DOI:10.3390/molecules22122092]
31. Abazari MF, Torabinejad S, Zare Karizi S, Samadian H, Jalili-ghelichi S, et al. Biologically modified electrospun polycaprolactone nanofibrous s
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mokhames Z, Dehghani Ashkezari M, Seyedjafari E, Seifati S M. Growth and differentiation of mesenchymal cell-derived cardiomyocytes on biologically active nanofibers: an experimental study. MEDICAL SCIENCES 2025; 35 (3) :294-305
URL: http://tmuj.iautmu.ac.ir/article-1-2283-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 3 (Fall 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.03 seconds with 35 queries by YEKTAWEB 4718