[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 3 (Fall 2025) ::
MEDICAL SCIENCES 2025, 35(3): 241-257 Back to browse issues page
Bacterial extracellular vesicles in sepsis: from diagnosis to treatment
Elaheh Salmeh1 , Erfan Soroush1 , Masood Soltanipur2 , Hossein Yarmohammadi2 , Mahdi Rezaei3 , Leila Hafazeh4 , Abolfazl Fateh5 , Seyed Mohsen Mirhosseini6 , Seyed Davar Siadat7
1- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran - Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran-Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran-Health Research Center, Chamran Hospital, Tehran, Iran
4- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
5- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
6- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran , D.siadat@gmail.com
Abstract:   (248 Views)
Sepsis is a systemic inflammatory reaction caused by infection. Severe sepsis can lead to multiple organ dysfunction, with high incidence and mortality. Nearly 500,000 cases of sepsis occur in the United States, causing 80,000 deaths annually. Septic shock is a subset of sepsis and is a fatal condition. Despite significant advances for treating this disorder, the mortality rate of sepsis remains high. Numerous studies have shown the important role of bacterial extracellular vesicles in cancers, neurodegenerative disorders, diabetes, viral infections, autoimmune and kidney diseases. Also, bacterial extracellular vesicles have recently received attention due to their effective help in the diagnosis and management of sepsis. In recent years, studies on the role of bacterial extracellular vesicles in inflammatory diseases have shown that they have a dual role in the imbalance of the inflammatory response in sepsis. Extracellular vesicles in sepsis can be beneficial or harmful, depending on their origin and content. These vesicles have also been considered mediators of cell death and inflammation during conditions such as sepsis. This review comprehensively reviews studies investigating the role of bacterial extracellular vesicles in the pathogenesis, management, and treatment of sepsis.
 
Keywords: Bacterial extracellular vesicle, Sepsis, Inflammatory responses.
Full-Text [PDF 1104 kb]   (98 Downloads)    
Semi-pilot: Review | Subject: Infectious Diseases
Received: 2024/10/9 | Accepted: 2024/12/28 | Published: 2025/09/1
References
1. Huang M, Cai S, Su J. The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int J Mol Sci 2019;20: 5366. [DOI:10.3390/ijms20215376]
2. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med 2016;193:259-72. [DOI:10.1164/rccm.201504-0781OC]
3. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021;47:1181-247. [DOI:10.1007/s00134-021-06506-y]
4. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315:801-10. [DOI:10.1001/jama.2016.0287]
5. Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [DOI:10.3389/fimmu.2019.02536]
6. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367: eaau6977. [DOI:10.1126/science.aau6977]
7. Wang L, Yu X, Zhou J, Su C. Extracellular Vesicles for Drug Delivery in Cancer Treatment. Biol Proced Online 2023;25:28. [DOI:10.1186/s12575-023-00220-3]
8. Murao A, Brenner M, Aziz M, Wang P. Exosomes in Sepsis. Front Immunol 2020; 11:2140. [DOI:10.3389/fimmu.2020.02140]
9. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 2015;65:783-97. [DOI:10.1093/biosci/biv084]
10. van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 2022;23:369-82. [DOI:10.1038/s41580-022-00460-3]
11. Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, et al. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agents Cancer 2023;18:3. [DOI:10.1186/s13027-023-00480-4]
12. Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 2018;39:514-33. [DOI:10.1038/aps.2017.82]
13. McMillan HM, Kuehn MJ. The extracellular vesicle generation paradox: a bacterial point of view. EMBO J 2021;40:e108174. [DOI:10.15252/embj.2021108174]
14. Bishop DG, Work E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 1965;96:567-76. [DOI:10.1042/bj0960567]
15. Qin YF, Lu XY, Shi Z, Huang QS, Wang X, Ren B, et al. Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process. Anal Chem 2022;94:12416-26. [DOI:10.1021/acs.analchem.2c02226]
16. Vlassov A V, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012;1820:940-8. [DOI:10.1016/j.bbagen.2012.03.017]
17. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. Traffic 2017;18:425-32. [DOI:10.1111/tra.12488]
18. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015;13:605-19. [DOI:10.1038/nrmicro3525]
19. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003;348:1546-54. [DOI:10.1056/NEJMoa022139]
20. Opal SM, Garber GE, LaRosa SP, Maki DG, Freebairn RC, Kinasewitz GT, et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis 2003;37:50-8. [DOI:10.1086/375593]
21. Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care 2016; 4:22. [DOI:10.1186/s40560-016-0148-1]
22. Alaniz RC, Deatherage BL, Lara JC, Cookson BT. Membrane vesicles are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol 2007;179:7692-701. [DOI:10.4049/jimmunol.179.11.7692]
23. Imamiya R, Shinohara A, Yakura D, Yamaguchi T, Ueda K, Oguro A, et al. Escherichia coli-Derived Outer Membrane Vesicles Relay Inflammatory Responses to Macrophage-Derived Exosomes. mBio 2023;14: e0305122. [DOI:10.1128/mbio.03051-22]
24. Raeven P, Zipperle J, Drechsler S. Extracellular Vesicles as Markers and Mediators in Sepsis. Theranostics 2018;8:3348-65. [DOI:10.7150/thno.23453]
25. Weber B, Henrich D, Hildebrand F, Marzi I, Leppik L. The roles of extracellular vesicles in sepsis and systemic inflammatory response syndrome Shock 2023;59:161-72. [DOI:10.1097/SHK.0000000000002010]
26. Tian C, Wang K, Zhao M, Cong S, Di X, Li R. Extracellular vesicles participate in the pathogenesis of sepsis. Front Cell Infect Microbiol 2022; 12: 1018692. [DOI:10.3389/fcimb.2022.1018692]
27. Jin X, Sun H, Yang L. How Extracellular Nano-Vesicles Can Play a Role in Sepsis? An Evidence-Based Review of the Literature. Int J Nanomedicine 2023; 18:5797-814. [DOI:10.2147/IJN.S427116]
28. Beltrán-García J, Osca-Verdegal R, Pallardó F V, Ferreres J, Rodríguez M, Mulet S, et al. Sepsis and Coronavirus Disease 2019: Common Features and Anti-Inflammatory Therapeutic Approaches. Crit Care Med 2020;48:1841-4. [DOI:10.1097/CCM.0000000000004625]
29. Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death Dis 2019;10:782. [DOI:10.1038/s41419-019-2015-1]
30. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol 2017;39:517-28. [DOI:10.1007/s00281-017-0639-8]
31. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140:805-20. [DOI:10.1016/j.cell.2010.01.022]
32. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011;30:16-34. [DOI:10.3109/08830185.2010.529976]
33. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med 2019; 7:2050312119835043. [DOI:10.1177/2050312119835043]
34. Gao K, Jin J, Huang C, Li J, Luo H, Li L, et al. Exosomes Derived from Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front Immunol 2019; 10:1560. [DOI:10.3389/fimmu.2019.01560]
35. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 2017;17:407-20. [DOI:10.1038/nri.2017.36]
36. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Front Immunol 2015; 6:257. [DOI:10.3389/fimmu.2015.00257]
37. Stephens DS, Greenwood B, Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 2007;369:2196-210. [DOI:10.1016/S0140-6736(07)61016-2]
38. Vanaja SK, Russo AJ, Behl B, Banerjee I, Yankova M, Deshmukh SD, et al. Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell 2016 May;165(5):1106-19. [DOI:10.1016/j.cell.2016.04.015]
39. Aung KM, Sjöström AE, von Pawel-Rammingen U, Riesbeck K, Uhlin BE, Wai SN. Naturally Occurring IgG Antibodies Provide Innate Protection against Vibrio cholerae Bacteremia by Recognition of the Outer Membrane Protein U. J Innate Immun 2016;8(3):269-83. [DOI:10.1159/000443646]
40. Shah B, Sullivan CJ, Lonergan NE, Stanley S, Soult MC, Britt LD. Circulating bacterial membrane vesicles cause sepsis in rats. Shock 2012;37:621-8. [DOI:10.1097/SHK.0b013e318250de5d]
41. Soult MC, Lonergan NE, Shah B, Kim WK, Britt LD, Sullivan CJ. Outer membrane vesicles from pathogenic bacteria initiate an inflammatory response in human endothelial cells. J Surg Res 2013;184:458-66. [DOI:10.1016/j.jss.2013.05.035]
42. Sun D, Chen P, Xi Y, Sheng J. From trash to treasure: the role of bacterial extracellular vesicles in gut health and disease. Front Immunol 2023; 14:1274295. [DOI:10.3389/fimmu.2023.1274295]
43. Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021;176:113851. [DOI:10.1016/j.addr.2021.05.021]
44. González MF, Díaz P, Sandoval-Bórquez A, Herrera D, Quest AFG. Helicobacter pylori Outer Membrane Vesicles and Extracellular Vesicles from Helicobacter pylori-Infected Cells in Gastric Disease Development. Int J Mol Sci 2021;22:4823. [DOI:10.3390/ijms22094823]
45. Furuyama N, Sircili MP. Outer Membrane Vesicles (OMVs) Produced by Gram-Negative Bacteria: Structure, Functions, Biogenesis, and Vaccine Application. Biomed Res Int 2021; 2021:1490732. [DOI:10.1155/2021/1490732]
46. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010;2: a000414. [DOI:10.1101/cshperspect.a000414]
47. Kojer K, Riemer J. Balancing oxidative protein folding: the influences of reducing pathways on disulfide bond formation. Biochim Biophys Acta 2014;1844:1383-90. [DOI:10.1016/j.bbapap.2014.02.004]
48. Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018; 149:45-53. [DOI:10.1016/j.toxicon.2017.10.016]
49. Bose S, Aggarwal S, Singh DV, Acharya N. Extracellular vesicles: An emerging platform in gram-positive bacteria. Microb Cell 2020;7:312-22. [DOI:10.15698/mic2020.12.737]
50. Chen S, Lei Q, Zou X, Ma D. The role and mechanisms of gram-negative bacterial outer membrane vesicles in inflammatory diseases. Front Immunol 2023; 14:1157813. [DOI:10.3389/fimmu.2023.1157813]
51. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015;13:620-30. [DOI:10.1038/nrmicro3480]
52. Briaud P, Carroll RK. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect Immun 2020;88: e00333-20). [DOI:10.1128/IAI.00433-20]
53. Sartorio MG, Pardue EJ, Feldman MF, Haurat MF. Bacterial Outer Membrane Vesicles: From Discovery to Applications. Annu Rev Microbiol 2021;75:609-30. [DOI:10.1146/annurev-micro-052821-031444]
54. Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, et al. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [DOI:10.3389/fimmu.2021.689866]
55. Svennerholm K, Park KS, Wikström J, Lässer C, Crescitelli R, Shelke G V, et al. Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci Rep 2017;7:17434. [DOI:10.1038/s41598-017-16363-9]
56. Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care 2010;14: R182. [DOI:10.1186/cc9290]
57. Wang Y, Zhang S, Luo L, Norström E, Braun OÖ, Mörgelin M, et al. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis. J Cell Physiol 2018;233:1051-60. [DOI:10.1002/jcp.25959]
58. Michel LV, Gaborski T. Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. J Biol Chem 2022;298:102483. [DOI:10.1016/j.jbc.2022.102483]
59. Jan AT. Outer Membrane Vesicles (OMVs) of Gram-negative Bacteria: A Perspective Update. Front Microbiol 2017; 8:1053. [DOI:10.3389/fmicb.2017.01053]
60. Kim MR, Hong SW, Choi EB, Lee WH, Kim YS, Jeon SG, et al. Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy 2012;67:1271-81. [DOI:10.1111/all.12001]
61. Soult MC, Dobrydneva Y, Wahab KH, Britt LD, Sullivan CJ. Outer membrane vesicles alter inflammation and coagulation mediators. J Surg Res 2014;192:134-42. [DOI:10.1016/j.jss.2014.05.007]
62. Park KS, Choi KH, Kim YS, Hong BS, Kim OY, Kim JH, et al. Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. PloS One 2010;5: e11334. [DOI:10.1371/journal.pone.0011334]
63. Kim JH, Lee J, Park J, Gho YS. Gram-negative and Gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol 2015; 40:97-104. [DOI:10.1016/j.semcdb.2015.02.006]
64. Boscolo A, Campello E, Bertini D, Spiezia L, Lucchetta V, Piasentini E, et al. Levels of circulating microparticles in septic shock and sepsis-related complications: a case-control study. Minerva Anestesiol 2019;85:625-34. [DOI:10.23736/S0375-9393.18.12782-9]
65. Claxton A, Papafilippou L, Hadjidemetriou M, Kostarelos K, Dark P. The challenge of recognising sepsis: Future nanotechnology solutions. J Intensive Care Soc 2020;21:241-6. [DOI:10.1177/1751143719896554]
66. Paoli CJ, Reynolds MA, Sinha M, Gitlin M, Crouser E. Epidemiology and Costs of Sepsis in the United States-An Analysis Based on Timing of Diagnosis and Severity Level. Crit Care Med 2018;46:1889-97. [DOI:10.1097/CCM.0000000000003342]
67. Stranieri I, Kanunfre KA, Rodrigues JC, Yamamoto L, Nadaf MIV, Palmeira P, et al. Assessment and comparison of bacterial load levels determined by quantitative amplifications in blood culture-positive and negative neonatal sepsis. Rev Inst Med Trop Sao Paulo 2018;60: e61. [DOI:10.1590/s1678-9946201860061]
68. Pilecky M, Schildberger A, Knabl L, Orth-Höller D, Weber V. Influence of antibiotic treatment on the detection of S. aureus in whole blood following pathogen enrichment. BMC Microbiol 2019;19:180. [DOI:10.1186/s12866-019-1559-7]
69. Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, et al. Blood Culture Results Before and After Antimicrobial Administration in Patients with Severe Manifestations of Sepsis: A Diagnostic Study. Ann Intern Med 2019;171:547-54. [DOI:10.7326/M19-1696]
70. Turgman O, Schinkel M, Wiersinga W. Host Response Biomarkers for Sepsis in the Emergency Room. Crit Care 2023 Mar 21; 27:97. [DOI:10.1186/s13054-023-04367-z]
71. Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, et al. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction. Gut 2020;69:191-3. [DOI:10.1136/gutjnl-2018-317726]
72. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010;14: R15. [DOI:10.1186/cc8872]
73. Grondman I, Pirvu A, Riza A, Ioana M, Netea MG. Biomarkers of inflammation and the etiology of sepsis. Biochem Soc Trans 2020;48:1-14. [DOI:10.1042/BST20190029]
74. Opal SM, Wittebole X. Biomarkers of Infection and Sepsis. Crit Care Clin 2020;36:11-22. [DOI:10.1016/j.ccc.2019.08.002]
75. Singh V, Mishra S, Rao GRK, Jain AK, Dixit VK, Gulati AK, et al. Evaluation of nested PCR in detection of Helicobacter pylori targeting a highly conserved gene: HSP60. Helicobacter 2008;13:30-4. [DOI:10.1111/j.1523-5378.2008.00573.x]
76. Brennan K, Martin K, FitzGerald S, O'Sullivan J, Wu Y, Blanco A, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 2020; 10:1039. [DOI:10.1038/s41598-020-57497-7]
77. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS One 2013;8: e76520. [DOI:10.1371/journal.pone.0076520]
78. Park JY, Kang CS, Seo HC, Shin JC, Kym SM, Park YS, et al. Bacteria-Derived Extracellular Vesicles in Urine as a Novel Biomarker for Gastric Cancer: Integration of Liquid Biopsy and Metagenome Analysis. Cancers (Basel) 2021;13: 4687. [DOI:10.3390/cancers13184687]
79. Yang J, Moon HE, Park HW, McDowell A, Shin TS, Jee YK, et al. Brain tumor diagnostic model and dietary effect based on extracellular vesicle microbiome data in serum. Exp Mol Med 2020;52:1602-13. [DOI:10.1038/s12276-020-00501-x]
80. Lee Y, Park JY, Lee EH, Yang J, Jeong BR, Kim YK, et al. Rapid Assessment of Microbiota Changes in Individuals with Autism Spectrum Disorder Using Bacteria-derived Membrane Vesicles in Urine. Exp Neurobiol 2017;26:307-17. [DOI:10.5607/en.2017.26.5.307]
81. Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 2015; 87:3-10. [DOI:10.1016/j.ymeth.2015.02.019]
82. Rider MA, Hurwitz SN, Meckes DGJ. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. Sci Rep 2016; 6:23978. [DOI:10.1038/srep23978]
83. Liangsupree T, Multia E, Riekkola ML. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636:461773. [DOI:10.1016/j.chroma.2020.461773]
84. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 2006;Chapter 3:Unit 3.22. [DOI:10.1002/0471143030.cb0322s30]
85. Lener T, Gimona M, Aigner L, Börger V, Buzas E, Camussi G, et al. Applying extracellular vesicles-based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles 2015; 4:30087. [DOI:10.3402/jev.v4.30087]
86. Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med 2020;46:854-87. [DOI:10.1007/s00134-020-06022-5]
87. Sartelli M, Kluger Y, Ansaloni L, Hardcastle TC, Rello J, Watkins RR, et al. Raising concerns about the Sepsis-3 definitions. World journal of emergency surgery: World J Emerg Surg 2018; 13:6. [DOI:10.1186/s13017-018-0165-6]
88. Popescu CR, Cavanagh MMM, Tembo B, Chiume M, Lufesi N, Goldfarb DM, et al. Neonatal sepsis in low-income countries: epidemiology, diagnosis and prevention. Expert Rev Anti Infect Ther 2020;18:443-52. [DOI:10.1080/14787210.2020.1732818]
89. van den Boorn JG, Schlee M, Coch C, Hartmann G. SiRNA delivery with exosome nanoparticles. Front Immunol 2011;29:325-6. [DOI:10.1038/nbt.1830]
90. Effah CY, Ding X, Drokow EK, Li X, Tong R, Sun T. Bacteria-derived extracellular vesicles: endogenous roles, therapeutic potentials and their biomimetics for the treatment and prevention of sepsis. Front Immunol 2024; 15:1296061. [DOI:10.3389/fimmu.2024.1296061]
91. Cao M, Shi M, Zhou B, Jiang H. An overview of the mechanisms and potential roles of extracellular vesicles in septic shock. Front Immunol 2023; 14:1324253. [DOI:10.3389/fimmu.2023.1324253]
92. Pfalzgraff A, Correa W, Heinbockel L, Schromm AB, Lübow C, Gisch N, et al. LPS-neutralizing peptides reduce outer membrane vesicle-induced inflammatory responses. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:1503-13. [DOI:10.1016/j.bbalip.2019.05.018]
93. Park KS, Svennerholm K, Shelke G V, Bandeira E, Lässer C, Jang SC, et al. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019;10:231. [DOI:10.1186/s13287-019-1352-4]
94. Seyama M, Yoshida K, Yoshida K, Fujiwara N, Ono K, Eguchi T, et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver. Biochim Biophys Acta Mol Basis Dis 2020;1866:165731. [DOI:10.1016/j.bbadis.2020.165731]
95. David L, Taieb F, Pénary M, Bordignon PJ, Planès R, Bagayoko S, et al. Outer membrane vesicles produced by pathogenic strains of Escherichia coli block autophagic flux and exacerbate inflammasome activation. Autophagy 2022;18:2913-25. [DOI:10.1080/15548627.2022.2054040]
96. Essandoh K, Yang L, Wang X, Huang W, Qin D, Hao J, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta 2015;1852:2362-71. [DOI:10.1016/j.bbadis.2015.08.010]
97. Jiang Y, Zhou Z, Liu C, Wang L, Li C. Bacterial outer membrane vesicles as drug delivery carrier for photodynamic anticancer therapy. Front Chem 2023;11: 1284292. [DOI:10.3389/fchem.2023.1284292]
98. Xie J, Li Q, Haesebrouck F, Van Hoecke L VR. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol 2022;40:1173-94. [DOI:10.1016/j.tibtech.2022.03.005]
99. Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in Homeostasis, Immunity, and Cancer. Immunity 2017;46:15-28. [DOI:10.1016/j.immuni.2016.12.012]
100. Chen Q, Rozovsky S, Chen W. Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging. Chem Commun (Camb) 2017;53:7569-72. [DOI:10.1039/C7CC04246A]
101. Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet 2015; 89:49-88. [DOI:10.1016/bs.adgen.2014.10.003]
102. Gothelf A, Gehl J. What you always needed to know about electroporation-based DNA vaccines. Hum Vaccin Immunother 2012;8:1694-702. [DOI:10.4161/hv.22062]
103. Ayed Z, Cuvillier L, Dobhal G, Goreham R. Electroporation of outer membrane vesicles derived from Pseudomonas aeruginosa with gold nanoparticles. SN Appl Sci 2019;1:1646. [DOI:10.1007/s42452-019-1646-2]
104. Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release 2015; 205:35-44. [DOI:10.1016/j.jconrel.2014.11.029]
105. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev 2010;9:425-74. [DOI:10.1007/s11101-010-9183-z]
106. Chen J, Zhang H, Wang S, Du Y, Wei B, Wu Q, et al. Inhibitors of Bacterial Extracellular Vesicles. Front Microbiol 2022; 13:835058. [DOI:10.3389/fmicb.2022.835058]
107. Zhang Y, Chen Y, Lo C, Zhuang J, Angsantikul P, Zhang Q, et al. Inhibition of Pathogen Adhesion by Bacterial Outer Membrane-Coated Nanoparticles. Angew Chem Int Ed Engl 2019;58):11404-8. [DOI:10.1002/anie.201906280]
108. Li M, Zhou H, Yang C, Wu Y, Zhou X, Liu H, et al. Bacterial outer membrane vesicles as a platform for biomedical applications: An update. J Control Release 2020; 323:253-68. [DOI:10.1016/j.jconrel.2020.04.031]
109. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, et al. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 2011;3:109ra115. [DOI:10.1126/scitranslmed.3003021]
110. Schulz E, Goes A, Garcia R, Panter F, Koch M, Müller R, et al. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J Control Release 2018; 290:46-55. [DOI:10.1016/j.jconrel.2018.09.030]
111. Huang W, Meng L, Chen Y, Dong Z, Peng Q. Bacterial outer membrane vesicles as potential biological nanomaterials for antibacterial therapy. Acta Biomater 2022; 140:102-15. [DOI:10.1016/j.actbio.2021.12.005]
112. Kulkarni HM, Nagaraj R, Jagannadham M V. Protective role of E. coli outer membrane vesicles against antibiotics. Microbiol Res 2015; 181:1-7. [DOI:10.1016/j.micres.2015.07.008]
113. Kadurugamuwa JL, Beveridge TJ. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 1996 ;178:2767-74. [DOI:10.1128/jb.178.10.2767-2774.1996]
114. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 2005;437:422-5. [DOI:10.1038/nature03925]
115. Gan Y, Li C, Peng X, Wu S, Li Y, Tan JPK, et al. Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections. Nanomedicine 2021; 35:102398. [DOI:10.1016/j.nano.2021.102398]
116. Aytar Çelik P, Derkus B, Erdogan K, Barut D, Enuh BM, Yildirim Y, et al. Bacterial membrane vesicle functions, laboratory methods, and applications. Biotechnol J 2021; 54:107869. [DOI:10.1016/j.biotechadv.2021.107869]
117. Ellis TN, Leiman SA, Kuehn MJ. Naturally produced outer membrane vesicles from Pseudomonas aeruginosa elicit a potent innate immune response via combined sensing of both lipopolysaccharide and protein components. Infect Immun 2010;78:3822-31. [DOI:10.1128/IAI.00433-10]
118. van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J 2015;10:1689-706. [DOI:10.1002/biot.201400395]
119. Collins BS. Gram-negative outer membrane vesicles in vaccine development. Discov Med 2011;12:7-15.
120. Unal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol 2011;33:395-408. [DOI:10.1007/s00281-010-0231-y]
121. Kim OY, Hong BS, Park KS, Yoon YJ, Choi SJ, Lee WH, et al. Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses. J Immunol 2013;190:4092-102. [DOI:10.4049/jimmunol.1200742]
122. Lee WH, Choi HI, Hong SW, Kim KS, Gho YS, Jeon SG. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp Mol Med 2015;47: e183. [DOI:10.1038/emm.2015.59]
123. Chronopoulos A, Kalluri R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 2020;39:6951-60. [DOI:10.1038/s41388-020-01509-3]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salmeh E, Soroush E, Soltanipur M, Yarmohammadi H, Rezaei M, Hafazeh L, et al . Bacterial extracellular vesicles in sepsis: from diagnosis to treatment. MEDICAL SCIENCES 2025; 35 (3) :241-257
URL: http://tmuj.iautmu.ac.ir/article-1-2312-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 3 (Fall 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4718