[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
Webmail::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 35, Issue 4 (winter 2025) ::
MEDICAL SCIENCES 2025, 35(4): 436-449 Back to browse issues page
Investigation of the impact of drug-sensitive and drug-resistant Mycobacterium tuberculosis Strains on inflammatory pathways and cell death in A549 lung epithelial cells
Rouhollah Abdolhamidi1 , Setareh Haghighat1 , Arfa Moshiri , Abolfazl Fateh2 , Seyed Davar Siadat
1- Department of Microbiology, TeMS.C.,Islamic Azad University, Tehran, Iran
2- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
Abstract:   (252 Views)
Background: Tuberculosis has long been a significant challenge to global healthcare. The host-pathogen interaction with Mycobacterium tuberculosis plays a critical role in the progression of the infection, influencing immune responses and regulating cell death processes such as apoptosis and necrosis. However, the relationship between these processes and inflammation remains unclear. This study examines the expression levels of genes related to apoptosis, necrosis, and inflammation in A549 lung epithelial cells infected with drug-sensitive and drug-resistant Mycobacterium tuberculosis strains.
Materials and methods: Strains of Mycobacterium tuberculosis with varying antibiotic resistance (sensitive, rifampin-resistant, multidrug-resistant, and extensively drug-resistant) were obtained from the Pasteur Institute of Iran. A549 cells were cultured and infected. Genes linked to the studied pathways were selected using bioinformatics, and their expression levels were assessed using RT-PCR.
Results: All strains showed increased expression of anti-apoptotic genes (BCL2, RB1), chemokines (IL8, MCP1), and pro-inflammatory cytokines (TNF-α, IFN-γ), alongside reduced expression of anti-inflammatory genes (IL10) and pro-apoptotic genes (BAD, BAX) post-infection. The Beijing genotype (sensitive strain) induced higher inflammatory and apoptotic gene expression than the New-1 genotype (resistant strains). No significant changes were observed in necrosis-related genes (FADD, RIPK1).
Conclusion: Variations in apoptosis and inflammation-related gene expression appear to stem more from genotypic differences than drug resistance. This underscores the pivotal role of the Mycobacterium tuberculosis genotype in modulating host immune responses during infection.
 
Keywords: Mycobacterium tuberculosis, Drug resistance, Inflammation, Apoptosis, Necrosis
Full-Text [PDF 2094 kb]   (122 Downloads)    
Semi-pilot: Experimental | Subject: Microbiology
Received: 2024/11/16 | Accepted: 2024/12/31 | Published: 2025/12/1
References
1. Natarajan A, Beena P, Devnikar AV, Mali S. A systemic review on tuberculosis. Indian J Tuberc 2020;67:295-311. [DOI:10.1016/j.ijtb.2020.02.005]
2. World Health Organization. Global tuberculosis report 2024. Geneva: WHO; 2025. [Available from: https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2024]
3. Park M, Satta G, Kon OM. An update on multidrug-resistant tuberculosis. Clin Med 2019;19:135-9. [DOI:10.7861/clinmedicine.19-2-135]
4. Ferdosnejad K, Sholeh M, Abdolhamidi R, Soroush E, Siadat SD, Tarashi S. The occurrence rate of Haarlem and Beijing genotypes among Middle Eastern isolates of multi drug resistant Mycobacterium tuberculosis: A systematic review and meta-analysis. Respir Investig 2024;62:296-304. [DOI:10.1016/j.resinv.2024.01.010]
5. Bialvaei AZ, Asgharzadeh M, Aghazadeh M, Nourazarian M, Kafil HS. Challenges of tuberculosis in Iran. Jundishapur J Microbiol 2017;10:e37866. [DOI:10.5812/jjm.37866]
6. Torkaman MRA, Nasiri MJ, FaRnia P, Shahhosseiny MH, Mozafari M, Velayati AA. Estimation of recent transmission of Mycobacterium tuberculosis strains among Iranian and Afghan immigrants: A cluster-based study. J Clin Diagn Res 2014;8:DC05-8.
7. Ferdosnejad K, Zamani MS, Soroush E, Fateh A, Siadat SD, Tarashi S. Tuberculosis and lung cancer: metabolic pathways play a key role. Nucleosides Nucleotides Nucleic Acids 2024:1-20. [DOI:10.1080/15257770.2024.2308522]
8. Iran MoHo. Ministry of Health of Iran. National Center for Tuberculosis and Leprosy Control web site 2017. Available from: http://tb-lep.behdasht.gov.ir/TB_HIV_Situation_in_Iran.aspx.
9. Kim JK, Silwal P, Jo E-K. Host-pathogen dialogues in autophagy, apoptosis, and necrosis during mycobacterial infection. Immune Netw 2020;20:e37. [DOI:10.4110/in.2020.20.e37]
10. Tarashi S, Omrani MD, Moshiri A, Fateh A, Siadat SD, Fuso A. The correlation of microbiota and host epigenome in tuberculosis. In: Rezaei N, ed. Tuberculosis. Integrated Studies for a Complex Disease. SpringerLink; 2023. p. 977-1002. [DOI:10.1007/978-3-031-15955-8_47]
11. Ekert PG, Vaux DL. Apoptosis and the immune system. Br Med Bull 1997;53:591-603. [DOI:10.1093/oxfordjournals.bmb.a011632]
12. Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system. Nat Immunol 2003;4:410-5. [DOI:10.1038/ni0503-410]
13. Walker N, Harmon B, Gobe G, Kerr J. Patterns of cell death. Methods Achiev Exp Pathol 1988;13:18-54.
14. Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003;22:8590-607. [DOI:10.1038/sj.onc.1207102]
15. MacFarlane M, Williams AC. Apoptosis and disease: a life or death decision. EMBO Rep 2004;5:674-8. [DOI:10.1038/sj.embor.7400191]
16. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 2014;15:135-47. [DOI:10.1038/nrm3737]
17. Rello S, Stockert J, Moreno V, Gamez A, Pacheco M, Juarranz A, et al. Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis 2005;10:201-8. [DOI:10.1007/s10495-005-6075-6]
18. Flores‐Romero H, Ros U, Garcia‐Saez AJ. Pore formation in regulated cell death. EMBO J 2020;39:e105753. [DOI:10.15252/embj.2020105753]
19. Danelishvili L, McGarvey J, Li Yj, Bermudez LE. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 2003;5:649-60. [DOI:10.1046/j.1462-5822.2003.00312.x]
20. Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ, et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 1997;65:298-304. [DOI:10.1128/iai.65.1.298-304.1997]
21. Mvubu NE, Pillay B, McKinnon LR, Pillay M. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. Cytokine 2018;104:53-64. [DOI:10.1016/j.cyto.2017.09.027]
22. Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 2000;164:2016-20. [DOI:10.4049/jimmunol.164.4.2016]
23. Zhan L, Wang J, Wang L, Qin C. The correlation of drug resistance and virulence in Mycobacterium tuberculosis. Biosafety and Health 2020;2:18-24. [DOI:10.1016/j.bsheal.2020.02.004]
24. Rezaei N, Hosseini N-S, Saghazadeh A, Fateh A, Duse A, Ahmad A, et al. Tuberculosis: integrated studies for a complex disease 2050. SpringerLink; 2023. P.1063-98. [DOI:10.1007/978-3-031-15955-8_1]
25. Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes 2017;8:39. [DOI:10.3390/genes8010039]
26. Lam A, Prabhu R, Gross CM, Riesenberg LA, Singh V, Aggarwal S. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol 2017;313:L218-L29. [DOI:10.1152/ajplung.00162.2017]
27. van Klingeren B, Dessens-Kroon M, van der Laan T, Kremer K, van Soolingen D. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-throughput, reproducible, absolute concentration method. J Clin Microbiol 2007;45:2662-8. [DOI:10.1128/JCM.00244-07]
28. Woods GL, Brown-Elliott BA, Conville PS, Desmond EP, Hall GS, Lin G, et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2011 Mar. Report No.: M24-A2.
29. Association NT. Diagnostic standards and classification of tuberculosis. New York: National tuberculosis association; 1940.
30. Vaziri F, Kohl TA, Ghajavand H, Kargarpour Kamakoli M, Merker M, Hadifar S, et al. Genetic diversity of multi-and extensively drug-resistant Mycobacterium tuberculosis isolates in the capital of Iran, revealed by whole-genome sequencing. J Clin Microbiol 2019;57: e01477-18. [DOI:10.1128/JCM.01477-18]
31. Caceres N, Vilaplana C, Prats C, Marzo E, Llopis I, Valls J, et al. Evolution and role of corded cell aggregation in Mycobacterium tuberculosis cultures. Tuberculosis 2013;93:690-8. [DOI:10.1016/j.tube.2013.08.003]
32. Sequeira PC, Senaratne RH, Riley LW. Inhibition of toll-like receptor 2 (TLR-2)-mediated response in human alveolar epithelial cells by mycolic acids and Mycobacterium tuberculosis mce1 operon mutant. Pathog Dis 2014;70:132-40. [DOI:10.1111/2049-632X.12110]
33. Louis KS, Siegel AC. Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol 2011;740:7-12. [DOI:10.1007/978-1-61779-108-6_2]
34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001;25:402-8. [DOI:10.1006/meth.2001.1262]
35. Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 2007;13:7254-63. [DOI:10.1158/1078-0432.CCR-07-1598]
36. Schmidt E, Tuder R. Role of apoptosis in amplifying inflammatory responses in lung diseases. J Cell Death 2010;3:41-53. [DOI:10.4137/JCD.S5375]
37. Srinivasan L, Ahlbrand S, Briken V. Interaction of Mycobacterium tuberculosis with host cell death pathways. Cold Spring Harb Perspect Med 2014;4:a022459. [DOI:10.1101/cshperspect.a022459]
38. Abdalla AE, Ejaz H, Mahjoob MO, Alameen AAM, Abosalif KOA, Elamir MYM, Mousa MA. Intelligent mechanisms of macrophage apoptosis subversion by mycobacterium. Pathogens 2020;9:218. [DOI:10.3390/pathogens9030218]
39. Tarashi S, Fateh A, Mirsaeidi M, Siadat SD, Vaziri F. Mixed infections in tuberculosis: the missing part in a puzzle. Tuberculosis 2017;107:168-74. [DOI:10.1016/j.tube.2017.09.004]
40. Tarashi S, Badi SA, Moshiri A, Nasehi M, Fateh A, Vaziri F, et al. The human microbiota in pulmonary tuberculosis: Not so innocent bystanders. Tuberculosis 2018;113:215-21. [DOI:10.1016/j.tube.2018.10.010]
41. Tong J, Meng L, Bei C, Liu Q, Wang M, Yang T, et al. Modern Beijing sublineage of Mycobacterium tuberculosis shift macrophage into a hyperinflammatory status. Emerg Microbes Infect 2022;11:715-24. [DOI:10.1080/22221751.2022.2037395]
42. Porcelli SA, Jacobs Jr WR. Tuberculosis: unsealing the apoptotic envelope. Nat Immunol 2008;9:1101-2. [DOI:10.1038/ni1008-1101]
43. Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol 2010;8:668-74. [DOI:10.1038/nrmicro2387]
44. Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 1998;66:1121-6. [DOI:10.1128/IAI.66.3.1121-1126.1998]
45. Guiedem E, Pefura-Yone EW, Ikomey GM, Nkenfou CN, Mesembe M, Yivala MM, et al. Cytokine profile in the sputum of subjects with post-tuberculosis airflow obstruction and in those with tobacco related chronic obstructive pulmonary disease. BMC Immunol 2020;21:1-11. [DOI:10.1186/s12865-020-00381-w]
46. Alemán M, Garcia A, Saab MA, De La Barrera SS, Finiasz M, Abbate E, et al. Mycobacterium tuberculosis-induced activation accelerates apoptosis in peripheral blood neutrophils from patients with active tuberculosis. Am J Respir Cell Mol Biol 2002;27:583-92. [DOI:10.1165/rcmb.2002-0038OC]
47. Zhang W, Zhu T, Chen L, Luo W, Chao J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am J Physiol Heart Circ Physiol 2020;318:H59-H71. [DOI:10.1152/ajpheart.00308.2019]
48. Ooppachai C, Limtrakul P, Yodkeeree S. Dicentrine potentiates TNF-α-induced apoptosis and suppresses invasion of A549 lung adenocarcinoma cells via modulation of NF-κB and AP-1 activation. Molecules 2019;24:4100. [DOI:10.3390/molecules24224100]
49. Wen L-P, Madani K, Fahrni JA, Duncan SR, Rosen GD. Dexamethasone inhibits lung epithelial cell apoptosis induced by IFN-γ and Fas. Am J Physiol 1997;273:L921-L9. [DOI:10.1152/ajplung.1997.273.5.L921]
50. Bailey DP, Kashyap M, Bouton LA, Murray PJ, Ryan JJ. Interleukin-10 induces apoptosis in developing mast cells and macrophages. J Leukoc Biol 2006;80:581-9. [DOI:10.1189/jlb.0405201]
51. San LL, Aye KS, Oo NAT, Shwe MM, Fukushima Y, Gordon SV, et al. Insight into multidrug-resistant Beijing genotype Mycobacterium tuberculosis isolates in Myanmar. Int J Infect Dis 2018;76:109-19. [DOI:10.1016/j.ijid.2018.06.009]
52. Nguyen L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch Toxicol 2016;90:1585-604. [DOI:10.1007/s00204-016-1727-6]
53. Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010;8:260-71. [DOI:10.1038/nrmicro2319]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdolhamidi R, Haghighat S, Moshiri A, Fateh A, Siadat S D. Investigation of the impact of drug-sensitive and drug-resistant Mycobacterium tuberculosis Strains on inflammatory pathways and cell death in A549 lung epithelial cells. MEDICAL SCIENCES 2025; 35 (4) :436-449
URL: http://tmuj.iautmu.ac.ir/article-1-2333-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 35, Issue 4 (winter 2025) Back to browse issues page
فصلنامه علوم پزشکی دانشگاه آزاد اسلامی واحد پزشکی تهران Medical Science Journal of Islamic Azad Univesity - Tehran Medical Branch
Persian site map - English site map - Created in 0.03 seconds with 37 queries by YEKTAWEB 4732